Reaction of Ethyl Diazoacetate with Cobalt Porphyrins. Part $2{ }^{1}$

By Alan W. Johnson * and David Ward, School of Molecular Sciences, University of Sussex, Falmer, Brighton BN1 90J

The reactions of ethyl diazoacetate with various cobalt complexes of meso-tetraphenylporphyrin are shown to proceed similarly to those of cobalt complexes of octaethylporphyrin, although the products are less stable. In the cobalt octaethylporphyrin series, two examples are provided of the nucleophilic fission of porphyrin nitrogen-carbon bonds with formation of alkylcobalt porphyrin derivatives.

The condensation of ethyl diazoacetate with various cobalt complexes of octaethylporphyrin (OEP) was reported to give the adduct ($\mathbf{1} ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{Et}$, $\mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$ or Br), and various reactions of this adduct were described. ${ }^{1}$ Thus, reduction with chromium(II) gave compound (2; M $=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=$ $\mathrm{R}^{3}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$), from which the metal could be removed with hydrochloric acid. Treatment of the complex (1) with ethanolic hydrochloric acid gave first the product (2; $M=C o R^{1}=E t, R^{2}=H, R^{3}=X=$ Cl) and then the bridged species (3 ; $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$, $\mathrm{X}=\mathrm{Cl})$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the adduct ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$) in deuteriochloroform at $-35^{\circ} \mathrm{C}$ confirmed the assigned structure. ${ }^{1}$ It indicated that substitution at β - or meso-positions had not occurred. The methine proton of the diazoacetic ester residue corresponded to a singlet at $\delta-1.78$, but at room temperature this was not a separate signal. Variable temperature studies (-35 to $+20^{\circ} \mathrm{C}$) showed that the chemical shift of this signal increased with increasing temperature, and at room temperature it probably coincided with that of the peripheral methyl multiplet ($\delta \mathbf{1 . 4 - 2 . 0}$). The increased sharpness of the peripheral β-methyl and methylene proton signals observed in decreasing the temperature from +20 to $-35^{\circ} \mathrm{C}$ suggests that increased mobility of the CoN-ethoxycarbonylmethylene group at higher temperatures enhances the buckling of the porphyrin ring. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a solution of the complex ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{Et}$, $\mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Br}$) in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine showed a profound change and provided evidence for a novel rearrangement. Signals corresponding to the protons of each of two pyridine rings were observed, and the methine proton corresponded to a signal at $\delta-2.71$. All the meso-protons were equivalent and resonated as a singlet at $\delta 10.30$. The electronic spectrum of the polar product (conductivity measurements showed that it was a $1: 1$ electrolyte) revealed a strong Soret band at 423 nm ($\varepsilon 101610$) and led us to formulate the product as (4; $\left.R^{1}=E t, R^{2}=H, X=B r\right)$, in which the pyridine has displaced the porphyrin ring nitrogen atom attached to carbon in (1). On adding pyridine in 0.25 mol quantities to a solution of the complex ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{Et}$, $\left.\mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Br}\right)$ in $\left[{ }^{2} \mathrm{H}\right]$ chloroform and running ${ }^{1} \mathrm{H}$ n.m.r. spectra after each addition, it was found that the greatest change in the spectrum occurred after the addition of two equiv. of pyridine; thereafter the spectrum did not change even when a 10 molar excess of the base had been added. A comparison of the ${ }^{13} \mathrm{C}$ n.m.r. spectra of the adducts ($1 ; M=C o, R^{1}=E t, R^{2}=H$, $\mathrm{X}=\mathrm{Br})$ and $\left(4 ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Br}\right)$ reflects
the increased symmetry and free rotation about the cobalt-carbon bond in the latter.

The marked increase in the intensity of the Soret band when the complex ($1 ; M=C o$) ($\varepsilon 0000$) is converted into (4) ($\varepsilon 100000$) is in keeping with the increased

(1)

(3)

(2)

(4)

planarity of the porphyrin chromophore. The pyridiniopyridine complex (4) was obtained as an amorphous solid, unstable in solution at $c a .60^{\circ} \mathrm{C}$, when it decomposed to the known bromopyridinecobalt(III) complex of OEP (5; $\left.\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}\right)$ together with a second, unidentified porphyrin.

The nucleophilic displacement of the porphyrin by pyridine is a novel reaction of N-substituted porphyrins.
${ }^{1}$ Part I, A. W. Johnson, D. Ward, C. M. Elson, P. Batten, A. L. Hamilton, and G. Shelton, J.C.S. Perkin I, 1975, 2076.

However, another rearrangement involving nucleophilic fission of a porphyrin nitrogen-carbon bond, this time in compound ($2 ; M=C o, R^{1}=E t, R^{2}=R^{3}=H$, $\mathrm{X}=\mathrm{Cl}$), was encountered during reduction with sodium borohydride in the absence of oxygen and light, resulting in rearrangement to the alkylcobalt derivative (6), isolated as dark purple needles (12%) after crystallisation in the dark. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum contained a singlet at $\delta-4.41$ corresponding to $\mathrm{Co} \cdot \mathrm{CH}_{2}$ and a singlet at $\delta 10.24$, showing equivalence of all four mesoprotons. The mass spectrum showed the molecular ion at $m / e 678(21 \%)$ and a base peak at $m / e 591$ (loss of $\mathrm{EtO}_{2} \mathrm{C} \cdot \mathrm{CH}_{2}$). The rearrangement presumably involves an intermediate N-substituted cobalt(I) porphyrin (7), the nucleophilic metal then displacing the porphyrin ring nitrogen atom. Parallel rearrangements have been reported for cobalt ${ }^{2}$ and rhodium ${ }^{3} \mathrm{~N}$-methyl derivatives of OEP. The mechanism is viewed as a reductive loss of the chloride ligand to yield the cobalt(I) complex, possibly with intermediate formation of the cobalt(I) radical anion.

(6)

(7)

A reaction of the nickel complex ($2 ; \mathrm{M}=\mathrm{Ni}, \mathrm{R}^{1}=$ $\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$) in the meso-tetraphenylporphyrin (TPP) series, involving abstraction of a proton ($\mathrm{R}^{3}=$ $\mathrm{H})$ followed by rearrangement of the resulting carbanion led to an aziridine derivative, which rearranged on thermolysis to ($1 ; \mathrm{M}=\mathrm{Ni}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$) and the isomeric homoporphyrins.4,5 The reaction of ethyl diazoacetate with cobalt(II) TPP yields the complex ($\mathrm{l} ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$) which undergoes reactions similar to those of the OEP analogue. The products derived from TPP proved difficult to combust completely, and reliable carbon and nitrogen analyses were not obtained in most cases. The complexes were less stable than the corresponding compounds in the OEP series, presumably as a result of steric interactions involving the phenyl groups and the ethoxycarbonylmethylene fragment. Indeed, the interaction is apparent in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of compound (1; $\mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$), where the nonequivalent methylene protons of the ester ethyl group correspond to a multiplet at $\delta 2.88$. Irradiation at the frequency of the ester methyl triplet at $\delta-0.08$ caused

[^0]the ester methylene multiplet to collapse to two doublets centred at $\delta 3.04$ and $2.71(J 10 \mathrm{~Hz})$. This behaviour suggests a lack of free rotation about the $\lambda \mathrm{CH}-\mathrm{CO}_{2} \mathrm{Et}$ bond due to the steric effect of one of the meso-phenyl groups. The methine proton signal of the complex (1; $\mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$) was not observed even at $-35{ }^{\circ} \mathrm{C}$ (cf. ref. 1), suggesting that the fluxional character of the bridge was more pronounced in this case. The absorptions corresponding to the β - and meso-phenyl protons are appreciably spread, indicating buckling of the porphyrin ring. The X-ray crystal structure of compound ($1 ; \mathrm{M}=\mathrm{Ni}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$), published recently, ${ }^{4}$ gives clear evidence of deviations from planarity in the porphyrin ring. In the visible spectrum, the Soret band of the nickel(II) complex ($\lambda_{\text {max. }} 419 \mathrm{~nm}$; $\varepsilon 138000$) differs appreciably from that of the chlorocobalt(III) complex ($\lambda_{\text {max. }} 431 \mathrm{~nm} ; \varepsilon 60000$), in which the degree of buckling of the porphyrin ring appears to be even greater. In the ${ }^{13} \mathrm{C}$ n.m.r. spectra the resonances for the methine carbons are at $\delta 22.57$ (Ni complex) and 25.7 (CoCl complex). As in the OEP series, the cobalt(III) TPP bromide appeared to react much faster with ethyl diazoacetate that the cobalt(II) complex. Pyridine appeared to react with the complex (1 ; $\mathrm{M}=$ $\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) in a manner similar to that observed with the OEP analogue. However, the product ($4 ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}$) was obtained only in solution, and attempts to isolate it in crystalline form led only to decomposition to (5; $\mathrm{R}^{1}=$ $\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a solution of (4; $\quad \mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{Ph}, \quad \mathrm{X}=\mathrm{Br}$) in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine showed a signal for the methine proton (derived from ethyl diazoacetate) at $\delta-1.06$, an ester methyl triplet at $\delta 0.32$, and two singlets for the β-protons at $\delta 9.34$ and 9.38. The electronic spectrum of a solution of (4; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}$) in pyridine was similar to that of the OPE analogue, the Soret band being of comparable intensity ($\lambda_{\text {max. }} 437 \mathrm{~nm} ; \varepsilon 100560$).

Reduction of the initial adduct ($\mathbf{l} ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}$, $\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$) with chromium(II) chloride gave cobalt(II) N-ethoxycarbonylmethyl-TPP as a crystalline penta-co-ordinate chloro-derivative $\left(2 ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}\right.$, $\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$), which could be demetallated with ethanolic hydrochloric acid to yield N-ethoxycarbonyl-methyl-TPP. ${ }^{6}$ The cobalt complex showed a ${ }^{1} \mathrm{H}$ n.m.r. spectrum typical of a paramagnetic species, the sweep width of the spectrum being about three times greater than that of a diamagnetic cobalt complex.*

Treatment of the complex ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}$, $\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}$) with ethanolic hydrogen chloride gave the metal-free bridged complex ($3 ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$, $\mathrm{X}=\mathrm{Cl})$, which was formed in much lower yield (3\%), in a slower reaction, than the OEP analogue, and was less stable and decomposed to (TPP) in hot solvents.

[^1]The electronic spectrum exhibited a very intense Soret band ($\lambda_{\text {max. }} 436 \mathrm{~nm} ; \varepsilon 158500$), as did the OEP analogue. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed a singlet at $\delta-1.07$ corresponding to the methine proton (exchangeable with $\mathrm{D}_{2} \mathrm{O}$). This resonance is at much lower field than that of the corresponding proton in the OEP series ($\delta-5.78$). The resonances of the ester methyl ($\delta,-0.64$) and methylene protons ($\delta 1.37$) were roughly similar in both series.

EXPERIMENTAL

N.m.r. spectra were measured for solutions in $\left[{ }^{2} \mathrm{H}\right]$ chloroform and u.v.-visible spectra for solutions in dichloromethane (except where otherwise stated) with instruments listed in earlier papers in this series. Mass spectra were determined with an A.E.I. MS9 or MS30 instrument, by direct sample insertion into the ion source.
[Ethoxycarbonyl(pyridinio)methyl](octaethylporphyrinato)pyridinecobalt (III) Bromide (4; $\mathbf{R}^{\mathbf{1}}=\mathrm{Et}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}, \mathrm{X}=$ $\mathrm{Br})$.- Bromo-(CoN-ethoxycarbonylmethyleneoctaethylporphyrinato)cobalt(III) ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{\mathbf{1}}=\mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{H}$, $\mathrm{X}=\mathrm{Br})(306.5 \mathrm{mg})$ was dissolved in acid-free dichloromethane (2 ml) and pyridine (1 ml) was added. The mixture was stirred at room temperature for 5 min . Light petroleum (30 ml) was added and the oily precipitate was separated by decantation and purified by repetition $(2 \times)$ of the precipitation procedure at room temperature (the complex is heat-sensitive). The amorphous purple solid so obtained was separated and dried under high vacuum to yield the product ($352 \mathrm{mg}, 95 \%$), m/e 591 (base peak; M -2 py $\left.-\mathrm{CHCO}_{2} \mathrm{Et}-\mathrm{Br}\right), \lambda_{\max } 349,423,536$, and 567 nm $\left(\varepsilon, 27980,101610,13680\right.$, and 10490), $\nu_{\max .} 1601,1485$, and 1442 (complexed pyridine rings), $1703(\mathrm{C}=\mathrm{O})$, and 1184 and $1155\left(\mathrm{CO}^{-} \mathrm{O}\right) \mathrm{cm}^{-1}, \delta_{\mathrm{H}} 9.97(\mathrm{~s}, 4$ meso-H), 7.77 (distorted $\mathrm{t}, 2 \alpha-\mathrm{H}$ of pyridinium ring), 6.41 (m, 3β - and $\gamma-\mathrm{H}$ of pyridinium ring), 5.84 (distorted $t, 2 \alpha-\mathrm{H}$ of pyridine ring), 4.76 (distorted $t, 3 \beta$ - and $\gamma-\mathrm{H}$ of pyridine ring), 4.06 (distorted $\mathrm{q}, 16 \mathrm{H}$ of ethyl CH_{2} groups), 1.94 ($\mathrm{t}, 12 \mathrm{H}$ of 4 ethyl CH_{3} groups), 1.90 ($\mathrm{t}, 12 \mathrm{H}$ of 4 ethyl CH_{3} groups), and $-2.71(\mathrm{~s}$, methine H$), \delta_{\mathrm{H}}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 10.30(\mathrm{~s}, 4$ meso -H$)$, 4.07 (distorted $\mathrm{q}, 16 \mathrm{H}$ of ethyl CH_{2} groups), 1.92 (t, 24 H of ethyl CH_{3} groups), 0.32 ($t, 3 \mathrm{H}$ of ester CH_{3}), and -2.19 (s , methine H), δ_{C} (natural abundance) 168.7 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 145.4 and 145.2 (both $4 C$, ring α-carbons), 141.6 and 141.4 (both $\mathrm{s}, 4 \mathrm{C}$, ring β-carbons), 140.8 ($\mathrm{d}, 2 \mathrm{C}$, pyridinium ring α-carbons), 134.9 (d, pyridinium ring γ-carbon), $120.7(\mathrm{~d}$, 2 C , pyridinium ring β-carbons), 145.1 ($\mathrm{d}, 2 \mathrm{C}$, pyridine ring α-carbons), 138.7 (d, pyridine ring γ-carbon), 124.1 ($\mathrm{d}, 2 \mathrm{C}$, pyridinium ring β-carbons), 97.9 and 97.8 (both $d, 2 C$, meso-carbons), 58.9 (t , ester CH_{2}), 19.9 ($\mathrm{t}, 8 \mathrm{C}$, peripheral methylenes), 18.7 ($\mathrm{q}, 8 \mathrm{C}$, peripheral methyls), and 12.9 (q , ester Me) (methine resonance not visible).

For comparison the complex ($1 ; M=\mathrm{Co}^{I I I}$) showed $\delta_{\mathrm{C}} 167.8 \mathrm{br}(\mathrm{s}, \mathrm{C}=\mathrm{O}), 167.8 \mathrm{br}(2 \alpha$ - or β-ring C), $156.4,153.3$, $151.7,151.5,151.0,149.1,147.4,147.3,146.0,143.7,142.2$, $141.3,129.4$, and 127.8 (all s, ring α - and β-carbons), 105.9 , 105.4, 99.6, and 95.4 (all d, meso-carbons), 59.0 (t, ester $\left.\mathrm{CH}_{2}\right), 21.6-16.9\left(\mathrm{~m}, 16 \mathrm{C}\right.$ of peripheral CH_{2} and $\left.\mathrm{CH}_{3}\right)$, $12.2\left(\mathrm{q}\right.$, ester $\left.\mathrm{CH}_{3}\right)$, and $22.6(\mathrm{~s}$, methine CH$)$.

The foregoing bromide (32.1 mg) was heated under reflux in benzene (100 ml) for 4 h . The solvent was then evaporated off and the residue was chromatographed (preparative t.l.c.) on silica [60% acetone-chloroform as solvent, with pyridine (5 ml) present in the chromatography tank].

The least polar red band was separated and eluted with acetone. The product so obtained was crystallised from dichloromethane-light petroleum to yield small red plates (14 mg) of bromopyridinecobalt(III) OEP (5; $\mathrm{R}^{\mathbf{1}}=\mathrm{Et}$, $\mathrm{R}^{2}=\mathrm{H}$), contaminated with a small quantity of an unknown red porphyrin. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum and t.l.c. behaviour were identical with those of an authentic specimen. ${ }^{1}$ The same product was obtained from ($1 ; M=C o$, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{Br}$) when heated under reflux in chloroform for $1 \mathrm{~h} ; \delta 146.4,140.0$ (both 8 C , ring α - and β carbons), 146.1 ($\mathrm{d}, 2 \mathrm{C}$, pyridine ring α-carbons), 136.8 (d , pyridine ring γ-carbon), $121.3(\mathrm{~d}, 2 \mathrm{C}$, pyridine ring β carbons), 96.3 (d, 4 meso-carbons), 20.1 ($\mathrm{t}, 8 \mathrm{C}$, peripheral CH_{2}), and $18.6\left(\mathrm{q}, 8 \mathrm{C}\right.$, peripheral $\left.\mathrm{CH}_{3}\right)$.
(Ethoxycarbonylmethyl)(octaethylporphyrinato)cobalt(1II).
-To a solution of chloro-(N-ethoxycarbonylmethyloctaethylporphyrinato) cobalt(III) $(81.5 \mathrm{mg})$ in dry, deoxygenated tetrahydrofuran (30 ml) under nitrogen in the dark, was added sodium borohydride $(6.1 \mathrm{mg})$, and the mixture was stirred at room temperature for 8 h . The solution was evaporated and the residue subjected to preparative t.l.c. on silica (8% acetone-light petroleum) with exclusion of light. The second most polar band was starting material $(58.2 \mathrm{mg})$, which was crystallised from dichloromethanelight petroleum. Material from the least polar band was crystallised from dichloromethane-methanol and yielded red-purple needles of the alkylcobalt(iII) derivative $(9.4 \mathrm{mg}$, 12.1%) $m / e 678(21 \%)$ and $591(100 \%)(M$ and M $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), $\lambda_{\max } 393,414,505$, and $542 \mathrm{~nm}(\varepsilon 144100$, 76040,6210 , and 14050), $\nu_{\max .} 1699(\mathrm{C}=\mathrm{O})$ and 1265 and $1240 \mathrm{~cm}^{-1}(\mathrm{CO}-\mathrm{O}), \delta_{\mathrm{H}} 10.24(\mathrm{~s}, 4$ meso -H$), 4.07$ and 4.035 (q, 16 H of peripheral ethyl CH_{2} in ratio $1: 1$), $1.90(t, 24 \mathrm{H}$ of peripheral ethyl $\left.\mathrm{CH}_{3}\right), 1.69\left(\mathrm{q}\right.$, ester $\left.\mathrm{CH}_{2}\right), 0.17(t$, ester CH_{3}), and $-4.44\left(\mathrm{~s}, \mathrm{Co} \cdot \mathrm{CH}_{2}\right)$.

Chloro-(CoN-ethoxycarbonylmethylene-meso-tetraphenylporphyrinato) cobalt(III) ($1 ; \mathrm{M}=\mathrm{Co}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$, $\mathrm{X}=\mathrm{Cl})$. -Cobalt(II) tetraphenylporphyrin (287.5 mg) was treated with ethyl diazoacetate $(0.24 \mathrm{ml})$ in chloroform $(50 \mathrm{ml})$; the mixture was stirred for 20 min , and then quickly evaporated to small volume at room temperature in vacuo. Light petroleum (50 ml) was added and the solution again evaporated. The precipitate was separated, washed with light petroleum, and dissolved in dichloromethane $(20 \mathrm{ml})$. The precipitation and dissolution were repeated three times each to give the product $(208.5 \mathrm{mg}$, 61%) as an amorphous powder (Found: $\mathrm{N}, 7.05$. $\mathrm{C}_{48} \mathrm{H}_{34}$ $\mathrm{ClCoN} 4_{4} \mathrm{O}_{2}$ requires $\mathrm{N}, 7.05 \%$), $m / e 671\left(M-\mathrm{Cl}-\mathrm{CHCO}_{2}-\right.$ $\mathrm{Et}), \lambda_{\text {max. }} 419,431,513,583,600$, and $632 \mathrm{~nm}(\varepsilon 56750$, $60800,9200,5070,4250$, and 3900), $\lambda_{\max .}$ (pyridine) $383,437,497,554$, and $593 \mathrm{~nm}(\varepsilon 1200,100560,5480$, 8900 , and 6180$)$, $\nu_{\text {max. }} 1720(\mathrm{C}=\mathrm{O})$ and 1216 and 1194 $\mathrm{cm}^{-1}(\mathrm{CO}-\mathrm{O}), \delta 9.47(\mathrm{~s}), 8.83$ (d), 6.94 (d), 5.59 (d), 4.94 (d), and 4.51 (d) (all single β - or phenyl protons), $8.47(2 \mathrm{H}, \mathrm{d}$, β - or phenyl protons), 7.80 br (m , remaining β - and phenyl protons), 2.88 (m , non-equivalent ester CH_{2}), and -0.08 (t , ester CH_{3}), δ_{C} (natural abundance) $165.5(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $152.4,150.3,147.0,146.0,144.9$, and 144.2 (all $\mathrm{s}, 6$ ring α-carbons), $142.1,141.8,141.4,140.9,123.3$, and 119.5 (s, 8 meso- and l-phenyl carbons), 137.2, 135.8, 135.3, $134.5,131.7,129.5,128.9,127.7$, and 127.7 (28 2-, 3 -, and 4-phenyl and β-carbons), 57.6 (t , ester CH_{2}), 22.6 (d, methine C), and $12.3\left(\mathrm{q}\right.$, ester $\left.\mathrm{CH}_{3}\right)$.

The analogous bromo-compound was prepared from tetraphenylporphyrinatocobalt(III) bromide (88 mg) and ethyl diazoacetate $(0.065 \mathrm{ml})$ in chloroform $(10 \mathrm{ml})$. After
stirring for 10 min the solution was evaporated to small volume and light petroleum (30 ml) was added to precipitate the product. The precipitation procedure was repeated twice to give the bromo-compound as a purple powder ($69.7 \mathrm{mg}, 71 \%$), $\lambda_{\text {max. }} 285,424,433,520,579,640$, and 740 $\mathrm{nm}(\varepsilon 25000,61300,62800,10380,6180,4500$, and 1580), $\nu_{\text {max }} 1719(\mathrm{C}=\mathrm{O})$ and 1217 and $1194 \mathrm{~cm}^{-1}(\mathrm{CO}-\mathrm{O})$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra were similar to those of the chloro-derivative.

Chloro-(N-ethoxycarbonylmethyl-meso-tetraphenylpor-phyrinato)cobalt(II).-The foregoing chloro-(CoN-ethoxycarbonylmethylene)cobalt(ini) derivative (97.2 mg) was dissolved in ethanol (20 ml) in an atmosphere of nitrogen and chromium(II) chloride solution ${ }^{1}(2 \mathrm{ml})$ was added. The solution was stirred for 20 min and poured into aqueous 5% sodium chloride (40 ml), and the product was extracted into dichloromethane ($2 \times 50 \mathrm{ml}$). The extract was purified by chromatography on a polyamide column and the green major band was eluted with 30% acetone-light petroleum. After removal of the solvent the product ($33.1 \mathrm{mg}, 34 \%$) was crystallised from dichloromethane-light petroleum (Found: C, 71.9; H, 4.55; N, 7.15. $\mathrm{C}_{48} \mathrm{H}_{35}$ $\mathrm{ClCoN} \mathrm{S}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 4.45 ; \mathrm{N}, 7.05 \%$), $m / e 793$ (M, $1.7 \%)$, $757(M-\mathrm{H}-\mathrm{Cl}, 1.9)$, and $671\left(M-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}-\right.$ $\mathrm{Cl}, 100$), $\lambda_{\text {max. }} 441,553,599$, and $632 \mathrm{~nm}(\varepsilon 147500,7000$, 12500 , and 6800), $\nu_{\text {max. }} 1742(\mathrm{C}=\mathrm{O})$ and 1218 and 1189 $\left(\mathrm{CO}^{-} \mathrm{O}\right) \mathrm{cm}^{-1}, \nu_{\text {max }}$ (CsI prism; Nujol) $322 \mathrm{~cm}^{-1}\left(\mathrm{Co}^{-\mathrm{Cl}}\right), \delta_{\mathrm{H}}$ $48.6,42.7,40.7,22.2,19.3,13.5,12.2,9.47,7.74,6.79,4.61$, $3.74,1.83,1.46,1.27,0.88,0.56,0.27,-0.42,-0.59$, -2.64 and -5.44 (all s, porphyrin ring H , phenyl H and $\left.\mathrm{N} \cdot \mathrm{CH}_{2}\right),-8.52$ (s, ester $\left.\mathrm{CH}_{3}\right)$, and $-10.9\left(\mathrm{~s}\right.$, ester $\left.\mathrm{CH}_{2}\right)$.

N-Ethoxycarbonylmethyl-meso-tetraphenylporphyrin.The foregoing chlorocobalt(iI) derivative (78.7 mg) was dissolved in chloroform (3 ml) and ethanol (8 ml) and concentrated hydrochloric acid (3.5 ml) was added. The solution was stirred for 30 min at room temperature, then poured into aqueous 5% sodium hydrogen carbonate (100 ml) and extracted with dichloromethane ($3 \times 50 \mathrm{ml}$). The extract was washed, dried, and evaporated and the residue crystallised from chloroform-ethanol to yield the product $(59.0 \mathrm{mg}$, 85%) as a purple crystalline solid for which satisfactory analytical figures were not obtained; $m / e 701(M, 15.7 \%)$, and $614\left(M-\mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}, 100 \%\right)$, $\lambda_{\text {max. }} 427,496,520,561$, 598 , and $655 \mathrm{~nm}(\varepsilon 229000,4080,9120,14070,5050$, and 4950), $v_{\text {max. }} 3300(\mathrm{NH}), 1729(\mathrm{C}=\mathrm{O})$, and 1219 and 1190 $\mathrm{cm}^{-1}(\mathrm{CO}-\mathrm{O}), \delta_{\mathrm{H}} 8.84(\mathrm{~s}, 2 \beta-\mathrm{H}$ on ring c$), 8.73$ and 8.54
(d, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern for $4 \beta-\mathrm{H}$ on rings B and D), 8.29 (m , $8 \mathrm{o}-\mathrm{H}$ of phenyl groups), $7.69(\mathrm{~m}, 12 \mathrm{~m}$ - and $p-\mathrm{H}$ of phenyl groups and $2 \beta-\mathrm{H}$ on ring A), 3.07 (q , ester CH_{2}), 0.43 (t , ester CH_{3}), and $-3.70\left(\mathrm{~s}, \mathrm{~N} \cdot \mathrm{CH}_{2}\right)(\mathrm{NH}$ signal not observed at room temperature but was seen as a broad singlet at $\delta-2.23$ at $-40^{\circ} \mathrm{C}$), δ_{C} (natural abundance) 166.6 (ester CO), $157.0,152.9,152.3,142.5,142.1,139.4,137.5,135.4$, $134.4,133.1,128.4,127.9,127.6,127.2,126.7$, and 119.8 (porphyrin and phenyl ring carbons s), 59.7 (ester CH_{2}), $43.4\left(\mathrm{~N} \cdot \mathrm{CH}_{2}\right)$, and 13.2 (ester CH_{3}).
cis-21,22-Ethoxycarbonylmethylene-meso-tetraphenyl-
porphyrin Hydrochloride from Chloro-(CoN-ethoxycarbonyl-methylene-meso-tetraphenylporphyrinato)cobalt(ini).- The chlorocobalt(iII) complex (1; $\mathrm{M}=\mathrm{Co}, \mathrm{R}^{\mathbf{1}}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$, $\mathrm{X}=\mathrm{Cl})(389.7 \mathrm{mg})$ in chloroform (10 ml) and ethanol $(40 \mathrm{ml})$ was stirred with concentrated hydrochloric acid (3 ml) at room temperature for 24 h . The mixture was poured into water and extracted with dichloromethane ($2 \times 50 \mathrm{ml}$). The resulting solution was shaken with aqueous 5% sodium chloride, then with water. Evaporation was followed by preparative t.l.c. (silica; 25% acetone-light petroleum). Three bands were separated. The least polar, orange band was separated and the product crystallised from dichloromethane-methanol as purple crystals ($47.0 \mathrm{mg}, 14 \%$) of meso-tetraphenylporphyrinatocobalt(II), identical with an authentic sample [t.l.c. (silica; 20% dichloromethane-light petroleum)]. The next, brownyellow band was separated and the product precipitated as a black powder (131.8 mg) from dichloromethane-light petroleum, $m / e 671\left(100 \%, \mathrm{C}_{44} \mathrm{H}_{28} \mathrm{CoN}_{4}\right)$, $\nu_{\text {max. }} 1704$ (C=O) and $1218 \mathrm{~cm}^{-1}\left(\mathrm{CO}^{-} \mathrm{O}\right)$. A closer t.l.c. examination showed four close-running bands. The most polar, green band was separated and the title hydrochloride was precipitated from dichloromethane-light petroleum as a green powder ($8.9 \mathrm{mg}, 3 \%$), $\lambda_{\text {max. }} 419,436,518,544,586$, and 624 $\mathrm{nm}(\varepsilon 141360,158500,8400,11700,11900$, and 6350), $\nu_{\text {max. }} 1741(\mathrm{C}=\mathrm{O})$ and $1212 \mathrm{~cm}^{-1}(\mathrm{CO}-\mathrm{O}), \delta_{\mathrm{H}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ reference), $9.17(3 \mathrm{H}, \mathrm{d}), 8.93(2 \mathrm{H}, \mathrm{d}), 8.91(\mathrm{lH}, \mathrm{d}), 8.54(1 \mathrm{H}, \mathrm{d})$, $8.52(2 \mathrm{H}, \mathrm{d}), 8.25(6 \mathrm{H}, \mathrm{m}), 7.18(9 \mathrm{H}, \mathrm{m}), 6.50(2 \mathrm{H}, \mathrm{d})$, and $6.16(2 \mathrm{H}, \mathrm{d})$, (β - and phenyl protons), 1.57 (q , ester CH_{2}), $-0.58\left(\mathrm{t}\right.$, ester $\left.\mathrm{CH}_{3}\right)$, and $-1.07\left(\mathrm{~s}, \mathrm{CH}, \mathrm{D}_{2} \mathrm{O}\right.$-exchangeable).

One of us (D. W.) thanks 3M, United Kingdom Ltd. for a Studentship and we acknowledge the help of Mr. M. Siverns with the measurement and interpretation of ${ }^{13} \mathrm{C}$ n.m.r. spectra.
[6/1388 Received, 15th July, 1976]

[^0]: * Details of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this and related complexes will be discussed in a forthcoming publication.
 ${ }^{2}$ H. Ogoshi, E. Watanabe, N. Kektzu, and Z. Yoshida, J.C.S. Chem. Comm., 1974, 943.
 ${ }^{3}$ H. Ogoshi, T. Omura, and Z. Yoshida, J. Amer. Chem. Soc., 1973, $95,1666$.

[^1]: ${ }^{4}$ H. J. Callot, T. Tschamber, B. Chevrier, and R. Weiss, Angew. Chem. Internat. Edn., 1975, 14, 567.
 ${ }_{5}$ H. J. Callot and T. Tschamber, J. Amer. Chem. Soc., 1975, 98, 6175.
 ${ }_{6}$ H. J. Callot and T. Tschamber, Bull. Soc. chim. France, 1973, 3192.

